DEPARTMENT OF THE INTERIOR U.S. GEOLOGICAL SURVEY # Magnetic susceptibilities of modally analyzed granitic rocks from the southern Sierra Nevada, California by Donald C. Ross¹ #### Open-File Report 89-204 This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards or with the North American Stratigraphic Code. Any use of firm or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. ¹Menlo Park, California #### CONTENTS | Pag | ze | |--|----| | Introduction1 | | | Measurements1 | | | Discussion | | | Regional Pattern2 | | | Relation of normative magnetite to | | | magnetic susceptibility3 | | | Magnetic susceptibility as a geologic | | | mapping aid5 | | | Miscellaneous anomalous samples and | | | their possible meaning7 | | | Magnetic susceptibility data to support | | | a reconstruction model of part of southern California9 | | | References cited13 | | | Appendix15 | | #### **ILLUSTRATIONS** #### **Figures** - 1. Southern Sierra Nevada, California - A. Index to location. - B. Generalized geologic map showing magnetic susceptibility in siu for granitic rocks. Uncolored areas within patterned portion of the map are various non-granitic units (Mesozoic metamorphic rocks, Cenozoic sedimentary and volcanic rocks, and alluvial deposits). Compilation based on granitic unit averages from Table 2. - 2. Histograms showing range of magnetic susceptibility for major granitic units of the southern Sierra Nevada, California (Ross, 1987a). Arrows indicate average for each unit. Both the Sacatar and Carver-Bowen units show one sample whose susceptibility is beyond the scale of the histogram. - 3. Magnetic susceptibility plotted against CIPW normative magnetite content for some chemically analyzed granitic rocks from the southern Sierra Nevada, California. - 4. Map showing magnetic susceptibility values in 10⁻⁵ siu for some samples of the granodiorites of Castle Rock and Whiterock. Dashed line marks limit of possible northward extension of Whiterock body based on susceptibility data. - 5. Map showing magnetic susceptibility values in 10⁻⁵ siu for samples of the granodiorites of Rabbit Island. Dashed line marks limit of low susceptibility values to southwest that may not be part of the Rabbit Island mass. - 6. Palinspastic reconstruction of part of southern California with Cenozoic displacements on major faults removed (Kistler, in press). Superimposed are generalized magnetic susceptibility values from Figures 1, 8, 9, and 10. - 7. Hypothesized early fault (San Juan to Clemens Well) restored by reversing displacements on the younger San Andreas and San Gabriel faults. Reversal of some 150 kilometers of right slip on the hypothesized fault juxtaposes the La Panza Range and Thermal Canyon. (Simplified from Joseph and others, 1982.) - 8. Index map showing Salinian block, Neenach area, and Thermal Canyon in relation to the southern Sierra Nevada, California. Average magnetic susceptibility in 10⁻⁵ siu shown for northern Salinian block localities. - 9. Index map showing location and magnetic susceptibility in 10⁻⁵ siu for reference samples from the central Salinian block. Averages shown for tentative north, central, and south subdivisions. - 10. Index map showing magnetic susceptibility in 10⁻⁵ siu for selected granitic samples in the Neenach area. - 11. Plot showing relation between readings on the "Bison" (cgs) and "Helsinki" (siu) magnetic susceptibility meters for selected granitic samples. #### Tables - Magnetic susceptibility averages and ranges for each granitic unit from the southern Sierra Nevada, California. Compilation includes all samples listed on Table 2 plus some samples with no mode, and some modal samples collected in 1987 and 1988 that are not listed in Ross (1987b). - 2. Magnetic susceptibilities in 10⁻⁵ siu for individual modal samples of granitic rocks from the southern Sierra Nevada, California. Samples located on index maps in Ross, 1987b. - 3. Comparison of modal magnetite with measured magnetic susceptibility for selected granitic samples in the southern Sierra Nevada. #### INTRODUCTION Magnetic susceptibility was measured on more than 1400 samples of granitic rocks to supplement a regional study of the basement rocks of the southern Sierra Nevada, California. The magnetic susceptibility studies, made long after most geologic mapping and petrographic studies were completed, would have been helpful in delineating some granitic units, particularly those major units that magnetic susceptibility results suggest are composite. Perhaps the main point to be gained from these measurements is that they are an easily obtainable tool that can in some places aid field mapping, especially in granitic terranes. In addition, magnetic susceptibility measurements also help in the interpretation of aeromagnetic data in terms of thicknesses of granitic plutons and the internal structure of the Sierra Nevada batholith at depth (Oliver, 1970, 1977, 1982). #### **MEASUREMENTS** Magnetic susceptibility is essentially a measure of the amount of magnetite present. One per cent magnetite produces a magnetic susceptibility of about 4000×10^{-5} siu (International standard units) which is approximately 3000×1^{-6} emu/cm³ (cgs units), and the relation between susceptibility per cubic centimeter and the percentage of magnetite is nearly linear. Although the relation is relatively constant, coarse magnetite gives somewhat higher susceptibility readings for the same amount of magnetite (Nettleton, 1976, p. 360-364; Nagata, 1961, p. 127-131; Dobrin and Savit, 1988, p. 650-652). For a discussion on siu, see Goldman and Bell (1981, p. 15). For the Sierra Nevada granitic rocks the susceptibility determinations were made from the same slab surfaces from which the modes were determined. The measurements were made with a hand-held susceptibility meter (JH-8 Geoinstruments) which operates according to the following description from the JH-8 operation manual: The function of the JH-8 is based on electromagnetic induction. There are two coils placed orthogonally to each other in the detector head, which is mounted in the bottom of the instrument case. In non-magnetic environment the voltage induced from transmitter coil to receiver coil is zero. When a sample is brought near the coils, a voltage which is proportional to magnetic susceptibility of the sample is induced to the receiver coil. This signal is detected by ----- an analog panel meter, which is ----- directly calibrated for susceptibility. The magnetic susceptibility is read directly from a dial on the meter in 10⁻⁵ siu. Several readings are normally taken from each slab surface at different orientations and an average reading is recorded. Magnetic susceptibility can vary considerably even in a small hand specimen, and more so between samples, so a large number of samples will naturally give a more meaningful average value for a given granitic unit. However, despite these variations that probably result from the sporadic distribution of magnetite, it is found that for most granitic units in the southern Sierra Nevada there is a relatively distinctive susceptibility signature if several tens of samples are measured. #### DISCUSSION #### Regional pattern In this report the average magnetic susceptibility of each granitic unit was used to show the regional pattern for the southern Sierra Nevada. These average values combined arbitrarily into three groups, 0-200, 200-1000, and >1000 x 10⁻⁵ siu, are the basis for Figure 1, on which the geology is generalized from Ross (1987a). The susceptibility groupings correlate to about <0.05, 0.05 to 0.25, and >0.25 per cent of magnetite, respectively. The unit averages are based on as many as 100 or more samples for the more extensive units such as Bear Valley Springs and Castle Rock and range down to only a few samples for some of the smaller units (Table 1). In addition, Table 2 lists all individually measured samples. Sample locations can be obtained from index maps in Ross (1987b). The pattern of magnetic susceptibility for the southern Sierra Nevada (Fig. 1) shows a rather magnetically quiet southern tip and western flank, contrasted with northwestern trending belts of intermediate to high susceptibility in the central and eastern part of the range. The northwest-trending grain of the magnetic susceptibility belt is at least in part dictated by the general northwest elongation of the plutons, but there is a notable increase in magnetic susceptibility to the north and east in this area. For the major (more extensive) plutons, histograms were prepared that show the ranges of magnetic susceptibilities (Fig. 2). These histograms show the plutons have essentially three kinds of distribution patterns: (1) low agnetic susceptibility units, where almost all values are $0-200 \times 10^{-5}$ siu (for example, Bear Valley Springs, Whiterock, and Gato-Montes), (2) an intermediate group with many readings below 200×10^{-5} siu, but a spread of values to 1000×10^{-5} siu (Cyrus Flat, Walt Klein, and Pine Flat), and (3) those bodies with a wide range of magnetic susceptibility where values range to several thousand $\times 10^{-5}$ siu (Castle Rock, Sacatar, Carver-Bowen, and Peppermint Meadow). These distribution patterns may be somewhat arbitrary as the sporadic distribution of a few grains of magnetite can cause significant variations between individual samples in the more magnetic units. However, in the plutons with overall low magnetic susceptibility (category 1), even the large bodies such as Bear Valley Springs are consistently low, although they may have abundant hornblende and biotite, the common hosts of magnetite grains. #### Relation of normative magnetite to magnetic susceptibility Ford and others (1988) observed a positive correlation between magnetic
susceptibility and normative magnetite (CIPW) in tonalitic rocks and gneisses of the Glacier Peak area of Washington. To test this correlation for the southern Sierra Nevada, a similar plot was made using 94 chemically analyzed rocks for which there is also susceptibility data (Fig. 3). A gross positive correlation of susceptibility and CIPW normative magnetite is evident, but normative magnetite does vary considerably in rocks of about the same magnetic susceptibility. That variation is more apparent for the higher susceptibility values producing a fan-shaped field. For any single chemically analyzed sample, however, normative magnetite may be a very poor predictor of susceptibility and *vice versa*. Unfortunately, no good data on modal magnetite abundance were available from petrographic studies in the southern Sierra Nevada to compare with susceptibility values. For a few samples the amount of modal metallic opaques has been reported, but with no distinction made between magnetite and other metallic opaques. Possibly an approximate estimate of modal magnetite can be obtained from the easily measured magnetic susceptibility. The supposition that magnetic susceptibility may be an easily acquired measure of modal magnetite was tested for 17 selected samples with high magnetic susceptibility (Table 3). Modal estimates were made by counting the metallic opaque grains on the same stained slab surface from which readings were made with the susceptibility meter. One thousand points were counted with a grid of points with approximately 1.5 mm centers. All metallic grains were assumed to be magnetite and 1 percent of magnetite was taken to equal about 4000×10^{-5} siu for the calculated susceptibilities listed in Table 3. Generally this calculated siu (modal) was lower than the measured siu (meter), but there is much scatter and no consistency. Reasons for this scatter probably include, modal inaccuracy of such a minor constituent, the meter reading may be influenced by magnetite concealed beneath the slab surface, and non-magnetic opaque grains may be present. Most suspicious as the cause of the scatter is the assumption that all metallic opaque grains are magnetite. Petrographic study of the metallic opaque minerals on stained slabs of selected samples with a high magnetic susceptibility confirmed that almost invariably the opaque grains are silvery, magnetic magnetite. Further study of stained slabs with low magnetic susceptibility showed absence or very sparse presence of magnetite, and only rarely the presence of any non-metallic opaque grains. Those identified were mostly "hematitic" alterations of magnetite. This was especially noted in sample 4414 of the granite of Bishop Ranch (Table 3), a visibly altered rock. Particularly closely examined were samples with low magnetic susceptibility containing abundant biotite and hornblende. These latter rocks, suspected of harboring ilmenite, were almost without opaque minerals. Presumably in southern Sierra Nevada granitic rocks, magnetite is the only significant metallic opaque mineral. Further north in the Sierra Nevada, magnetite is also the predominant metallic opaque mineral; in reduced rocks the iron goes into mostly hornblende and biotite, and does not crystallizes as ilmenite (F.C.W. Dodge, oral communication, 1989). The limited data of Table 3 suggest caution in using magnetic susceptibility as a fast and easy way to determine total magnetite, particularly for individual samples. Averages, however, do show a fair correspondence between amount of modal magnetite and percent of magnetite based on magnetic susceptibility readings. #### Magnetic susceptibility as a geologic mapping aid The magnetic susceptibility values for some units point out certain discrepancies that suggest some rocks were not correctly mapped. This is particularly true of the large Castle Rock unit. In my early mapping in the southernmost Sierra Nevada (Ross, in press), the rocks that later were correlated with the Castle Rock were divided into three "facies": Claraville, Whiterock, and Bootleg Canyon. The Claraville rocks, commonly porphyritic, were easily accommodated into the Castle Rock unit to the north. The Whiterock and Bootleg rocks, modally similar, were later defined together as the Whiterock facies of the Castle Rock unit (Ross, 1987a). The Whiterock facies is somewhat darker, relatively non-porphyritic, has less K-feldspar, and generally crops out southwest of the main Castle Rock unit. However, no obvious contacts were seen, and the Whiterock was considered to be closely related to the main Castle Rock unit. Magnetic susceptibility of the modal samples, made long after most field studies, revealed strong magnetic differences between Castle Rock and Whiterock. The Whiterock sample measurements were universally low, with susceptibilities on average about 25×10^{-5} siu, whereas the porphyritic Castle Rock averaged more than 1600×10^{-5} siu. Furthermore, there was a "buffer zone" of rocks originally mapped as Castle Rock, but with the low magnetic susceptibility pattern of Whiterock, that extends north of the originally defined Whiterock facies (Fig. 4). Also, a small number of samples with low susceptibility in the "Castle Rock" adjacent to bodies of the granites of Bishop Ranch and Sherman Pass may instead belong to those bodies (Table 2). This further suggests that a portable susceptibility meter might be a useful adjunct to field studies. It provides an easily obtainable measurement that may aid in distinguishing subtly different bodies, especially in poorly exposed terranes where contacts are rarely seen. The granodiorite of Rabbit Island has relatively high magnetic susceptibility (average of over 1300×10^{-5} siu), but includes two large areas of rocks to the southwest where magnetic susceptibilities are much lower (Fig. 5). These anomalous rocks, in part separated from the main Rabbit Island mass by other units, may not be Rabbit Island. The easternmost of these suspect rocks are generally somewhat lighter than typical Rabbit Island exposures, were controversial in the field, and were only somewhat grudgingly mapped as Rabbit Island. The magnetic susceptibility contrast (less than 50×10^{-5} siu for the suspect rocks, compared to more than 1300×10^{-5} siu for the rest of the mass) now suggests that these eastern exposures may be related to the Whiterock mass, or, even more likely, may be a separate intrusive body. The north-south elongated body of suspect Rabbit Island further to the west (Fig. 5) has contrastingly lower but variable magnetic susceptibility. It has only been sampled at its north end, and was referred to in the field as "dark Rabbit Island." The sparse samples indicate the elongate body is darker with a color index averaging 26.5 as contrasted to the average of the rest of Rabbit Island with 18. The biggest difference is that "dark Rabbit Island" samples have about twice as much hornblende. However, one sample at the northernmost tip of the body is normal Rabbit Island, both in texture and mineral content. Rubidium/strontium systematics also suggest this westernmost body is somewhat different. A sample from the "dark Rabbit Island" mass has 87 Sr/ 86 Sr = .7065, whereas several samples from other Rabbit Island outcrops all have ratios above .7071 (R.W. Kistler, written commun., 1987). The dark sample is also lower in both total Rb and Sr. One anomalous Rb/Sr sample may not be definitive, but it is at least suggestive of a difference. These dark rocks are not like the Whiterock, either texturally or mineralogically, and also they are more variable magnetically than the Whiterock. Probably this north-south elongated body is separate from both the Whiterock and Rabbit Island units, though more closely related to the Rabbit Island. #### Miscellaneous anomalous samples and their possible meaning Some variation in magnetic susceptibility is normal in these heterogeneous rocks, but the following especially anomalous samples are worth some discussion. Perhaps the most anomalous single sample is in the granodiorite of Alder Creek that has otherwise rather consistent magnetic susceptibility values of $10-50 \times 10^{-5}$ siu, but the one anomalous sample is 2000×10^{-5} siu (Table 2). This sample near the west edge of the Alder Creek mass is adjacent to outcrops of the tonalite of Carver-Bowen, of high susceptibility. Very likely the suspect Alder Creek sample is from a mismapped outcrop of Carver-Bowen. One Kern River sample (4648) is a hypabyssal-looking or quench-textured rock that is modally similar to other Kern River samples, but the mode has one per cent metallic opaques. The magnetic susceptibility (2500 x 10⁻⁵ siu) which is 10 times the unit average appears to result from a fortuitous concentration of magnetite. One Tejon Lookout sample (3752A) from the easternmost mass of the unit has a magnetic susceptibility much higher ($1400 \times 10^{-5} \text{ siu}$) than the unit average ($140 \times 10^{-5} \text{ siu}$). This is a modally atypical sample with 50 per cent K-feldspar and about 0.5 per cent metallic opaques --about the right amount to account for the high susceptibility if the opaques are magnetite. Although the sample is atypical, other samples from the same mass that are relatively high in magnetic susceptibility are not modally unusual, suggesting this eastern mass is not a separate body but part of the variable Tejon Lookout unit. The granodiorite of Wagy Flat has a great range of magnetic susceptibility (10-2400 x 10^{-5} siu). This distinctly textured unit, however, is one coherent body (though offset by the Kern Canyon fault) that appears to be characterized by the sporadic occurrence of magnetite. Pine Flat generally has a relatively high susceptibility with an average of 500×10^{-5} siu with many samples above 1000×10^{-5} siu. Scattered through the
mass are samples as low as 10×10^{-5} siu, including four samples of dikes into the Dunlap Meadows unit that texturally resemble Pine Flat rocks, but have somewhat lower color indices (particularly low in hornblende). These dikes were used as evidence that the Pine Flat unit intruded, and was younger than, the Dunlap Meadows (Ross, 1987a). The fact that there are similar low susceptibility samples within the main Pine Flat body that are texturally and mineralogically similar to the rest of the Pine Flat, suggests the dikes are indeed Pine Flat, just somewhat lighter than most other parts of the unit. The granodiorite of Poso Flat has generally low magnetic susceptibility (average about 60×10^{-5} siu), not much different from the tonalite of Bear Valley Springs (average about 50×10^{-5} siu), which it is probably related to. Three samples ¹, only questionably part of the Poso Flat unit, are anomalously high (500, 700, and 800×10^{-5} siu). Two are close to rocks that are texturally like the Walt Klein, and near the main Walt Klein body and the other is mixed in with an assortment of dike rocks. Both Walt Klein and the dike rocks have generally higher magnetic susceptibilities than Poso Flat and tend to confirm field suspicions that the three samples are not Poso Flat. Another sample, collected in 1987^2 , mapped as part of the Walt Klein mass but some distance from other Walt Klein outcrops, lacks the distinctive Walt Klein texture, although the mode is compatible with other Walt Klein samples. It also has a magnetic susceptibility (1600×10^{-5} siu) much higher than average Walt Klein (150×10^{-5} siu) and may be part of a separate mass. ¹Samples 66227, 6628, from near the Granite Road about 6 kilometers southwest of Glennville, and sample 6644, from abouy 4 kilometers SSE of Glennville, were collected after publication of Ross (1987b). ²Sample 6581, from about 7 kilometers southwest of Woody, was collected after publication of Ross (1987b). These samples point out how markedly anomalous samples may be used to recheck field mapping. Normally, no one sample is definitive as all units have some range in magnetic susceptibility, locally as much as one order of magnitude in a small outcrop. However, if a unit is, on average, consistently low, or high, a group of distinctly anomalous samples may be reason to suspect the original mapping, especially if the anomalous samples are near a contact with a body with which their magnetic susceptibility is more compatible. ### Magnetic susceptibility data to support a reconstruction model of part of southern California For many years there has been a continuing controversy as to whether the Salinian block originated a few hundred kilometers to the south in southern California, at least in part connected to the southern Sierra Nevada, or originated a couple thousand kilometers south of its present position and bears no relation to southern California. Isotopic data (Kistler, in press) supported by petrographic and chemical data (Ross, 1984) suggest a tie between the northern part of the Salinian block and the southernmost Sierra Nevada. A reconstruction based on these data (Fig. 6) juxtaposes the northern Salinian block against the southern Sierra Nevada, juxtaposes the Gabilan Range of the Salinian block with the Neenach area, and places the La Panza Range near the Thermal Canyon locality, if the right-lateral offset of a postulated mid-Tertiary fault (Smith, 1977) is restored along with offsets of the San Andreas and San Gabriel faults (Fig. 7). Correlation of the Thermal Canyon and La Panza areas has been suggested by the petrographic and isotopic similarity of porphyritic granodiorite and distinctive "polka-dot granite" dikes at both localities (Joseph and others, 1982). The correlation of Miocene volcanic rocks of the Neenach area with those of the Pinnacles in the Gabilan Range is well established (Matthews, 1976). However, the correlation of granitic rocks near these volcanics is much more tentative, although the granitic rocks are petrographically grossly comparable (Ross, 1984). These suspected correlations, indicating a few hundred kilometers of offset on the San Andreas and related faults, fly directly in the face of paleomagnetic data which suggest that the Salinian block may have originated as much as 2500 kilometers south of its present position (Champion and others, 1984). If these paleomagnetic data are valid, the petrographic, chemical, and isotopic similarity of the Salinian block to relatively nearby basement could be a string of unrelated coincidences. Magnetic susceptibility patterns may have something to say about these problematic rocks. Magnetic susceptibility was measured on about 100 granitic samples from a reference collection composed of representative samples from the Salinian block, the Neenach area, and the Thermal Canyon area near Palm Springs (Fig. 8). The reference collection is only a small sample of a much more extensive collection that was made during the study of the Salinian block, but still may provide some meaningful regional magnetic data. In the Salinian block, the magnetic susceptibility increases to the south (Fig. 9). A rather arbitrary three-fold split of the Salinian block shows a northern belt (including the north part of the Santa Lucia Range and most of the Gabilan Range) with an average value of 85×10^{-5} siu (32 samples). A central belt (most of the Santa Lucia Range and the southernmost Gabilan Range) has an average value of 260×10^{-5} siu (12 samples). Further south, the La Panza Range and the correlative Adelaide mass average 975×10^{-5} siu (4 samples). In the Neenach area (Fig. 10) there is a marked magnetic susceptibility difference between the two major granitic rock types. The more easterly, and more extensive, Fairmont Reservoir body averages 1650×10^{-5} siu (35 samples) whereas the Burnt Peak body to the west averages only 130×10^{-5} siu. Felsic variants scattered through both units have a wide range of magnetic susceptibility from 0-2000 $\times 10^{-5}$ siu. The Fairmont Reservoir body has fewer mafic minerals than the Burnt Peak body, but does have more modal opaque minerals (presumably predominantly or entirely magnetite), accounting for the higher susceptibility of the more felsic rock. The porphyritic granodiorite of Thermal Canyon (Fig. 8) has a rather high magnetic susceptibility of $2000-2200 \times 10^{-5}$ siu based on only three samples. These Thermal Canyon samples are somewhat higher in magnetic susceptibility than the presumed correlatives of the La Panza Range. Nevertheless, considering that one La Panza sample is as high as 1600×10^{-5} siu, and the small number of samples, I would suggest that the sparse magnetic susceptibility data don't rule out a correlation, especially in view of the petrographic and isotopic similarities and the presence of unusual polka-dot dikes in both areas. In the largely isotope data-based reconstruction of part of southern California (Fig. 6) the best match is between the low magnetic susceptibility areas of the northern Salinian block and the southern Sierra Nevada. Both these rather extensive granitic areas are anomalously low in magnetite and "magnetically" certainly support the isotopic reconstruction. Perhaps the biggest problem in matching magnetic susceptibility to the Kistler reconstruction (Fig. 6) is the juxtaposition of the Fairmont Reservoir body of rather high magnetic susceptibility (as high as 3000×10^{-5} siu for some samples) against the lower values from the central Salinian belt. The sparse exposure of granitic basement rock in the central and southern Salinian block between the Gabilan Range and the La Panza Range (Fig. 9) precludes any meaningful comparison of this area with the Fairmont mass. However, the southern Gabilan Range sample (500×10^{-5} siu) and the Adelaide sample (900×10^{-5} siu) are both within the range of some Fairmont Reservoir samples (Fig. 10). In conclusion, the magnetic susceptibility patterns across the San Andreas and San Gregorio-Hosgri faults in general support the isotopic reconstruction of Kistler (*in press*). Further magnetic susceptibility studies are needed though, particularly of the exposed granitic basement east of the San Andreas fault between the Fairmont Reservoir area and Thermal Canyon. Some indirect evidence that the basement has a relatively high magnetic susceptibility between the Neenach area and Thermal Canyon is found in aeromagnetic data. An aeromagnetic high over the Fairmont Reservoir granitic rocks of the Neenach area is comparable (High Life Helicopters, Inc./QEB, Inc., 1980) to magnetic highs northeast of the San Andreas fault in the Holcomb Ridge-Wrightwood area (Hanna and others, 19872; High Life Helicopters, Inc./QEB, Inc., 1980), suggesting that these basement rocks also have relatively high magnetic susceptibility. A belt of similar aeromagnetic highs (High Life Helicopters, Inc./QEB, Inc., 1980) extends along the northeast side of the San Andreas fault and on the south flank of the San Bernardino Mountains from Cajon Pass east to the Banning Pass area, and approaching the latitude of the Thermal Canyon exposures. These aeromagnetic data sample an area of various granitic and metamorphic rock types and provide only suggestions of overall high magnetic susceptibility. Individual samples of the various basement rock types still need to be sampled to determine a truly meaningful picture of the amount and variability of the magnetic susceptibility in this area. Somewhat more direct evidence of the high magnetic susceptibility of the Holcomb Ridge-Wrightwood area is afforded by modes of samples of the granodiorite of Holcomb Ridge and associated gneissic rocks. Modal analyses (Ross, 1972) show samples of the granodiorite contain up to 1 percent
metallic opaque minerals (probably mostly, if not all, magnetite); the gneissic rocks also contain probable magnetite. Unfortunately petrographic work on these samples was done before magnetic susceptibility meters became the rage. The samples have since been discarded except for a few representatives that are in the Smithsonian Institution, so further sampling will be necessary to confirm the relatively high magnetic susceptibility of this area. #### REFERENCES CITED - Champion, D.E., Howell, D.G., and Grommé, S.C., 1984, Paleomagnetic and geologic data indicating 2500 km of northward displacement for the Salinian and related terranes, California: *Journal of Geophysical Research*, v. 89, no. B9, p. 7736-7752. - Dobrin, M.B., and Savit, C.H., 1988, Introduction to geophysical prospecting, 4th ed., New York, McGraw Gill Book Company, 867 p. - Ford, A.B., Senterfit, R.M., and Flanigan, V.J., 1988, Magnetic susceptibility and density determinations for plutonic and metamorphic rocks of the Glacier Peak Wilderness and vicinity, northern Cascades, Washington: U.S. Geological Survey Open-File Report 86-77, 35 p. - Goldman, D.T., and Bell, R.J., 1981, The international system of units (SI): National Bureau of Standards Special Publication 330, 48 p. - Hanna, W.F., Brown, R.D., Ross, D.C., and Griscom, Andrew, 1972, Aeromagnetic reconnaissance along the San Andreas fault between San Francisco and San Bernardino, California: U.S. Geological Survey Inventory Map, GP-815, scale 1:250,000. - High Life Helicopters, Inc./QEB, Inc., 1980, Airborne gamma-ray spectrometer and magnetometer survey, San Bernardino and Los Angeles quadrangles (California): Grand Junction, Colorado, U.S. Department of Energy Grand Junction Office, 2 v. - Joseph, S.E., Davis, T.E., and Ehlig, P.L., 1982, Strontium isotopic correlation of the La Panza Range granitic rocks with similar rocks in the central and eastern Transverse Ranges: Geology and Mineral Wealth of the California Transverse Ranges, South Coast Geological Society, p. 310-320. - Kistler, R.W., in press, Two different lithosphere types in the Sierra Nevada, California, in Anderson, J.L., ed., Cordilleran magmatism: Geological Society of America Special Paper ____, p. ____. - Matthews, Vincent, III, 1976, Correlation of Pinnacles and Neenach volcanic formations and their bearing on San Andreas fault problem: *American Association of Petroleum Geologists Bulletin*, v. 60, no. 12, p. 2128-2141. - Nagata, Takesi, 1961, Rock magnetism: Tokyo, Maruzen Company Ltd., 350 p. - Nettleton, L.L., 1976, Gravity and magnetics in oil prospecting: U.S.A.: McGraw-Hill, Inc., 458 p. - Oliver, H.W., 1970, Geophysical studies of Emigrant Basin Primitive Area, p. G44-G49, in Tooker, E.W., ed., Mineral resources of the Emigrant Basin Primitive Area, California: U.S. Geological Survey Bulletin 1261G, 70 p. - Oliver, H.W., 1977, Gravity and magnetic investigations of the Sierra Nevada batholith: Geological Society of America Bulletin, v. 77, p. 445-461. - Oliver, H.W., 1982, Geophysical studies of the Minarets Wilderness and adjacent areas, Madera and Mono Counties, California, in Mineral resources of the Minarets Wilderness and adjacent areas: U.S. Geological Survey Bulletin 1516, p. 49-72. - Ross, D.C., 1972, Petrographic and chemical reconnaissance of some granitic and gneissic rocks near the San Andreas fault from Bodega Head to Cajon Pass, California: *U.S. Geological Survey Professional Paper 698*, 92 p. - _____, 1984, Possible correlations of basement rocks across the San Andreas, San Gregorio Hosgri, and Rinconada-Reliz-King City faults, California: U.S. Geological Survey Professional Paper 1317, 37 p. - _____, 1987a, Generalized geologic map of the basement rocks of the southern Sierra Nevada, California: U.S. Geological Survey Open-File Report 87-276, 28 p., scale 1:250,000. - _____, 1987b, Granitic rock modal data from the southern Sierra Nevada, California: U.S. Geological Survey Open-File Report 87-373, 276 p. - ______, (in press), Metamorphic and plutonic rocks of the southernmost Sierra Nevada, California, and their tectonic framework: U.S. Geological Survey Professional Paper 1381. - Smith, D.P., 1977, San Juan St. Francis fault -- hypothesized major middle Tertiary right-lateral fault in central and southern California: California Division of Mines and Geology Special Report 129, p. 41-50. #### **APPENDIX** ### Comparison of magnetic susceptibility readings from two different meters More than 600 granitic samples collected between lat 35°30' and 36°00'N in the southern Sierra Nevada were measured for magnetic susceptibility both by a "Bison" meter that records in emu (electromagnetic units in the cgs system) and a JH-8 Geoinstruments ("Helsinki") meter that records in siu (International standard units). Readings in the cgs system can be converted to siu by multiplying by 4π (12.57). When this simple conversion factor was applied to the Bison (cgs) readings the results were not the same as the Helsinki (siu) meter readings from the same samples. The readings between the two meters, though not equivalent, were nevertheless consistent (the relative ranking of magnetic susceptibility values from high to low was generally similar for both meters). Samples of relatively low magnetic susceptibility ($<150 \times 10^{-5}$ siu) gave readings lower (in part much lower) on the Helsinki meter than on the Bison meter (Fig. 11). For practical purposes this difference is probably not significant as rocks in this range are relatively non-magnetic. The "bunching" of the values on Figure 11 for samples of low magnetic susceptibility is somewhat artificial as the Bison (cgs) meter is read in much broader categories than the Helsinki (siu) meter. In the samples with higher magnetic susceptibility (>150 x 10⁻⁵ siu) the results were reversed between the two meters (Fig. 11). Readings on the Bison (cgs) meter were invariably lower than readings on the Helsinki (siu) meter. The ration Bison:Helsinki ranged from 0.6 to 0.9 with 0.63 the most prevalent ratio. The reasons for the difference between the two meters is at present moot and needs to be investigated. #### Figure 1. Southern Sierra Nevada, California - A. Index to location. - B. Generalized geologic map showing magnetic susceptibility in siu for granitic rocks. Uncolored areas within patterned portion of the map are various non-granitic units (Mesczoic metamorphic rocks, Cenozoic sedimentary and volcanic rocks, and alluvial deposits). Compilation based on granitic unit averages from Table 2. Figure 1A #### EXPLANATION Figure 1B Figure 2. Histograms showing range of magnetic susceptibility for major granitic units of the southern Sierra Nevada, California (Ross, 1987a). Arrows indicate average for each unit. Both the Sacater and Carver-bowen units show one sample whose susceptibility is beyond the scale of the histogram. #### A. Granite Brush Mountain Five Fingers Kern River Onyx Sherman Pass Tejon Lookout #### B. Granodiorite Alder Creek Alta Sierra Castle Rock Gato-Montes Hatchet Peak Keene Lebec Peppermint Meadow Pine Flat Poso Flat Rabbit Island Sacatar Wagy Flat Whiterock #### C. Tonalite Bear Valley Springs Carver-Bowen Dunlap Meadows Fountain Springs Hoffman Canyon Mount Adelaide Walt Klein #### D. Quartz diorite Caliente Cyrus Flat Tehachapi Mountains Walker Pass Figure 2 A. Figure 2 B. Figure 2 B(cont.). Figure 2 C. Number of samples Figure 2 C(cont.). Figure 2 D. Figure 3. Magnetic susceptibility plotted against CIPW normative magnetite content for some chemically analyzed granitic rocks from the southern Sierra Nevada, California. -27- Figure 4. Map showing magnetic susceptibility values for some samples of the granodiorites of Castle Rock and Whiterock. Dashed line marks limit of possible northward extension of Whiterock body based on susceptibility data. -28- Figure 5. Map showing magnetic susceptibility values in 10⁻⁵ siu for samples of the granodiorite of Rabbit Island. Dashed line marks limit of low susceptibility values to southwest that may not be part of the Rabbit Island mass. Figure 6. Palinspastic reconstruction of a part of southern California with Cenozoic displacements on major faults removed (Kistler, in press). Superimposed are generalized magnetic susceptibility values from figures 1, 8, 9, and 10. Figure 7. Hypothesized early fault (San Juan to Clemens Well) restored by reversing displacements on the younger San Andreas and San Gabriel faults. Reversal of some 150 kilometers of right slip on the hypothesized fault juxtaposes the La Panza Range and Thermal Canyon. (Simplified from Joseph and others, 1982) Figure 8. Index map showing Salinian block, Neenach area, and Thermal Canyon in relation to the southern Sierra Nevada, California. Average magnetic susceptibility in 10^{-5} siu units shown for northern Salinian block localities. -32 Figure 9. Index map showing location and magnetic susceptibility in 10^{-5} siu for reference samples from the central Salinian block. Averages shown for tentative north, central, and south subdivisions. -33 Figure 10. Index map showing magnetic susceptibility in 10-5 siu for selected granitic samples in the Neenach area. Table 1. Magnetic susceptibility averages and ranges for each granitic unit from the southern Sierra Nevada, California. Compilation includes all samples limed on table 2 plus some samples with no mode, and some modal samples collected in 1987 and 1988 that are not listed in Ross (1987b) | <u>Unit</u> | No of samples | Average (10 ⁻⁵ s.i.) | Range
(Histograms | Comments | |-------------------|---------------|---|----------------------|---| | GRANITE | | (10 ° s.i.) | for larger units) | | | Arrastre Creek | 3 | 330 | 300-400 | | | Baker Point | 5 | 130 | 10-500 | | | Bishop Ranch | 15 | 145 | 0-1200 | Most 0-15 | | Black Mtn | 7 | 3 6 | 10-100 | | | Bob Rabbit | 9 | 486 | 0-1700 |
Most 0-30 | | Bodfish Canyon | 14 | 92 | 0-600 | | | Brush Mtn | 18 | 5 | 0-25 | | | Cannell Creek | 7 | 397 | 10-1200 | | | Five Fingers | 14 | 1377 | 550-2500 | | | Kern River | 57 | 243 | 10-2500 | | | Lone Tree Canyon | 6 | 867 | 0-1500 | Only 1 below 800 | | Long Meadow | 13 | 770 | 10-3000 | | | Old Hot Spr. Rd. | 3 | 123 | 0-300 | | | Onyx | 30 | 55 8 | 0-1600 | | | Portuguese Pass | 15 | 263 | 10-1300 | | | Robbers Roost | 2 | 1000 | 400-1600 | | | Saddle Spr. Rd. | 6 | 16 | 0-35 | | | Sherman Pass | 16 | 1211 | 0-4000 | | | Tehachapi Airpor | t 5 | 13 | 0-60 | Only 1 above 5 | | Tejon Lookout | 32 | 140 | 0-1400 | | | Bean Canyon | 2 | 5 | 0-10 | | | Noname Canyon | 9 | 34 | 0-160 | Most are O | | Brown | 2 | 1250 | 1000-1500 | | | Sand Canyon | 3 | 150 | 40-300 | | | Msc. into Sacatar | 4 | 875 | 800-1000 | | | GRANODIORITE | | | | | | Alder Creek | 36 | 25
(Does not
include
2000 value) | 10-2000 | Only one above 50 (probably Carver-Bowen) | Table 1 (cont.) | <u>Unit</u> | No of seculous | 4 to | _ | · 3 - | |---|----------------|-------------------------|---|---| | <u> </u> | No. of samples | Average | Range
(Histograms | Comments | | GRANODIORITE | | (10 ⁻⁵ s.i.) | for larger | | | (cont.) | | | units) | | | Alta Sierra | 36 | 737 | 10-2200 | · | | Brush Creek | 17 | 564 | 20-1000 | | | Cameron | 4 | 225 | 40-600 | | | Castle Rock | 99 | 165 0 | 120-3200 | | | Deer Creek
(formerly Deer
Creekwest) | 15 | 13 93 | 600-3000 | | | Democrat Springs | 3 | 24 | 20-25 | | | Evans Flat | 11 | 17 | 10-30 | | | Gato-Montes | 49 | · 25 | 5 - 120 | | | Hatchet Peak | 24 | 260 | 10-1000 | | | Hershey Ranch
(formerly Deer
Creekeast) | 22 | 536 | 200-1400 | Only one above 800 | | Keene | 18 | 23 | 10-50 | | | Lebec | 23 | 42 | 10-600 | | | Lime Point | 3 | 15 | 5- 20 | | | Peppermint Mdw. | 37 | 1210 | 10-3500 | | | Pine Flat | 37 | 500 | 10-1800 | | | Poso Flat | 69 | 63 | 10-800 | | | Rabbit Island | 57 | 13 54 | 15-3200 | | | | | | ., -, -, -, -, -, -, -, -, -, -, -, -, -, | Average includes several samples with low magnetic susceptibility; mostly below 100 x 10 s.i. Average without these samples is nearly 2000 x 10 s.i. (see fig. 5). | | Sacatar | 33 | 1895 | 300-5000 | | | Sorrell Peak | 10 | 115 | 15-600 | Oml., 2 -1 | | Wagy Flat | 54 | 480 | 10-2400 | Only 2 above 30 | | Whiterock | 29 | 24 | 10– 40 | | Table 1 (cont.) | Unit | No. of samples | Average (10 -5 s.i.) | Range (Histograms for larger units) | Comments | |-------------------------|----------------|----------------------|-------------------------------------|----------------------------------| | TONALITE Antimony Peak | 18 | 31 | 10-120 | | | Ancimony reak | 10 | ٦, | 10-120 | Only one above 60 | | Bear Valley Sprin | ngs 126 | 47 | 20-450 | | | Carver-Bowen | 47 | 1148 | 40-4500 | | | Dunlap Meadow | 56 | 103 | 20 -7 00 | | | Fountain Springs | 24 | 423 | 20-1800 | | | Hoffman Canyon | 17 | 290 | 30-800 | | | Mount Adelaide | 29 | 21 | 5-70 | | | Walt Klein | 79 | , 149 | 5- 1600 | Only 2 (1600, 1000)
above 600 | | Wofford Heights | 10 | 673 | 40-3000 | · | | Zumwalt Ranch | 12 | 1400 | 600-4500 | Only one above 2000 | | | | | | | | | | | | | | QUARTZ DIORITE | | | | | | Calient = | 16 | <i>3</i> 5 | 20-60 | | | Cyrus Flat | 22 | 428 | 30-1600 | | | Freeman Junction | 10 | 1514 | 300-3000 | | | Long Valley | 2 | 2100 | 2000-2200 | | | Rhymes Campground | d ₂ | eap eas | 150-1000 | | | Tehachapi Mounta: | ins 44 | 42 | 15-120 | | | Walker Pass | 15 | 2100 | 800-3000 | | | Hypersthene-bear | ing 13 | 48 | 10-100 | | | QUARTZ MONZODIO | ORITE | | | | | Erskine Creek | 6 | 108 | 30-400 | Only 1 above 100 | Table 2. Magnetic susceptibilities in 10⁻⁵ siu for individual modal samples of granitic rocks from the southerm Sierra Nevada, California. Samples located on index maps in Ross (1987b). | Unit | Sample | 10 ⁻⁵ siu | Unit | Sample | 10 ⁻⁵ siu | |-------------------|---|---|----------------|--|---| | GRANITE | | | | | | | Arrastre Creek | 5992
6081B
6093 | 300
400
300 | Bodfish Canyon | 4770
4773
4814 A | 0
0
100 | | Baker Point | 4625R
4626
5281
5283 | 120
10
500
10 | | 4815
5050
5051
5052
5053 | 300
0
10
15
10 | | Bishop Ranch | 3798A
3799
3851
4053
4053F1
4068 | 5
0
0
5
400 | | 5067B
5069B
5071
5090
5155
5158 | 0
600
240
10
0 | | | 4075A
4085B
4414
4473C
4474
4475
4476
4478A
4563C | 10
40
1200
700
0
0
140
5 | Brush Mountain | 646
676
681
710
3035
3037
3046
3087A
3089 | 5
0
15
0
0 | | Black Mountain | 5097
5098
5099
5103
5506
5512
5556 | 40
60
20
10
10
100 | , | 3102A
3110
3113
3130A
3146
3221
3881 | 0
5
5
5
5
25
0 | | Bob Rabbit Canyon | 5599
5600
5602
5604
5606A
5641
5643
5648A
5648B | 20
30
1400
10
1700
0
1200
0 | Cannell Creek | 3882
3887
4619
4620
4630
4841
4914
4940
5139 | 0
5
600
700
160
10
10
1200 | | Unit | Sample | 10 ⁻⁵ siu | Unit | Sample | 10 ⁻⁵ siu | |--|---|---|--------------------------|--|--| | GRANITE (cont.) | | | | | | | Five Fingers | 6204
6207
6208
6209
6380
6387
6388
6405
6407
6417A
6420B
6493A
6535 | 1550
1500
1500
1200
700
550
1300
1000
1300
1800
1600
2000
900 | Kern River(cont.) | 5013
5013R
5013-1B
5113
5117C
5120B
5266
5268
5272
5274
5279
5286C
5286R
5288 | 800
600
700
15
30
200
30
25
70
25
100
100
100 | | Kern River | 4623
4624 | 30
20
500 | | 5290R
5297
Isa-1 | 30
400
800 | | 4627
4642
4643
4644
4644
4673
4736
4736
4766
4766 | 4637
4642
4643
4644 A
4646 | 700
160
700
50
450 | Lone Tree Canyon | 4077
4088
4090
4478B
4481 | 800
1000
1000
1500
0 | | | 4648
4672
4673
4734
4738
4742F1
4750
4762C
4763
4764
4811
48148 | 2500
400
400
10
15
40
500
60
20
25
10
15
40
100 | Long Meadow | 4962
4963
4964
4967
4970
5024
5025
5397
5408
5410
5413
5414 | 500
20
3000
700
10
500
350
800
180
1200
500
2000
300 | | | 4817
4818
4819A
4819B
4859-1
4884A
4887
4888
4892
4894
4896
5005
5009 | 100
70
10
60
300
400
15
15
30
10
15
15
20
600
600 | Old Hot Springs Rd. Onyx | 6048 4557A 4558 4563A 5161B 5315C 5328 5332 5678 5682F1 5700 5708 5719A 5719B | 70
0
5
0
700
500
700
0
900
45
1400
80
10
400
300 | | Unit | Sample | 10 ⁻⁵ siu | Unit | Sample | 10 ⁻⁵ siu | |----------------------|--------------|----------------------|-------------------|-------------------|----------------------| | GRANITE (cont.) | | | Tejon Lookout and | 647 | 10 | | 0 | 6171 | 800 | Bean Canyon | 666 | 20 | | Onyx (cont.) | 6131 | 1600 | • | 667B | 10 | | | 6152 | | | 3307A | 25 | | | 6195 | 10 | | 3308 | 10 | | | 6198 | 450 | | 3309 | 10 | | | 6236 | 500 | • | 3313A | 30 | | | 6238 | 30 | | 3315 | 5 | | | 6241 | 10 | | 3323 | 160 | | | rwk-6b | 900 | | 3329 | 800 | | Portuguese Pass | 5014 | 500 | | 3330 | 300 | | TOT TUBECOC TUBE | 5016 | 25 | | 3339 | 45 | | | 5017 | 40 | | 3457A | Ó | | | | | | 34 5 8 | 140 | | | 5059 | 600 | | 3465 | 250 | | | 5060 | 500 | | | | | | 5061 | 4 00 | | 3467 | 10 | | | 5062 | 40 | | 3469A | 250 | | | 5063 | 10 | | 3 4 73 | 700 | | | 5289 | 50 | | 3475 | 120 | | | 5571B | 1300 | | 3476a | 10 | | | 5574 | 25 | | 3480 | 0 | | | 5582 | 130 | | 3493 | 10 | | | 5595 | 80 | | 3495 | 0 | | | | | | 3509 | 60 | | Robbers Roost | 6392 | 1600 | | 3512 | 5 | | | 6395 | 400 | | 3514 | Ó | | and an amount of the | 4289 | 25 | | 3741 | 20 | | Saddle Springs Rd. | | 25 | | 3752A | 1400 | | | 4292 | 5 | | | | | | 5143 | 0 | | 3763A | 0 | | | 5152 | , O | | 3769 | 5 | | Sherman Pass | 4953D | 10 | | 3771 | 0 | | Sherman Pass | 5121 | 4000 | | <i>3</i> 828 | 0 | | | - | | | 4032 | 10 | | • | 5122
5123 | 3000 | None of moon | 6442A | 10 | | | 5123 | 2400 | Noname Canyon | 6448B | 140 | | | 5128A | 2000 | | | | | | 5133 | 400 | | 6451 | 0 | | | 5133R | 160 | | 6457 | 0 | | | 5350 | 200 | | 6468 | 0 | | | 5382 | 800 | | 6536C | 0 | | | 5383 | 160 | | 6538 | 0 | | | 5384 | 0 | , | 654 <i>3</i> B | 0 | | | 5384-1 | 1200 | Proces | 6430 | 1500 | | | 5387 | 1200 | Brown | | | | | 5390 | 2000 | | 6446 | 1000 | | | 5393A | 600 | Sand Canyon | 6448 a | 110 | | | 5400° | 300 | | 6450 | 300 | | | - | | | 6454B | 40 | | Tehachapi Airport | 3804A | 0 | | • . | 1000 | | | 4097 | 0 | Msc. into Sacatar |
6465A | 1000 | | - | 4098 | , 6 0 | | 6475B | 900 | | | 4101 | 5 | | 6478 | 800 | | | 4106 | 0 | | 648 <i>3</i> C | 800 | | Unit | Sample | 10 ⁻⁵ siu | Unit | Sample | 10 ⁻⁵ siv | |--------------|---------------|----------------------|---------------------|-------------------------|----------------------| | GRANODIORITE | | | | | | | Alder Creek | 5203 | 40 | Alta Sierra (cont.) | 5095
5105 | 400
20 | | | E 5203 | 5107A | 600 | | | | | | | | | 600 | | | | | | | 1600 | | | | | | | 1600 | | | | | | 5422 | 10 | | | | | | 5423 | 100 | | | | | | 5536 | 300 | | | | | | 5539 | 2000 | | | | | | 5541 | 1200 | | | | | | 5543 | 900 | | | | | | 5566 | 2200 | | | | | | 5567B | 40 | | | | | | | 140 | | | | | Brush Creek | | 1000 | | | | | | | 800 | | | | | | | 160 | | | | | | | 50 | | | | | | 4703 - 2 | 20 | | | 7700
EE87 | | | | 800 | | | | | | 470 5 | 800 | | | | | | | 2400 | | | 5087 | | | 5547A | 1000 | | | | | | 5550 | 900 | | | | | | 5553 | 700 | | | | | | | | | | _ | | Cameron | 4038 | 60 | | | | | | 4047 | 600 | | | | | | 4062 A | 200 | | | | | Castle Rock | 3848 | 2000 | | | | | 012011 | 3849B | 2000 | | | | | | 4049F1 | 1100 | | | | | | 4051 | 1400 | | | ##Common Pouc | o | | 4052 | 1000 | | | | и. | | 4059A | 800 | | Alta Sierra | | | | 4059B | 1200 | | | | | | 4064 | 1000 | | | | | | 4065A | 2000 | | | 4781 | | | 4067 | 1000 | | | | | | 4070 | 900 | | • | | | | 4073 | 1200 | | | | | | 4080 | 1400 | | | | | | 4086 | 1500 | | | | | | 4087 | 2000 | | | | | | 4092 | 1000 | | | | | | 4093 | 3000
1400 | | | | | ٠ | 4093 -1A | 2000 | | , | | | | 4094 | 1000 | | | | | | 413 1F1
4328* | 25 | | | | 2000 | - | | 40 | | | 5064 | 2000 | | 4335* | +∪ | | Unit | Sample | 10 ⁻⁵ siu |
Unit | | Sample | 10 ⁻⁵ siu | |----------------------|-------------------------|----------------------|--------------|---------|-----------------------|----------------------| | | | | Cookle Deele | (| 1.060 | 2000 | | GRANODIORITE (cont.) | | | Castle Rock | (cont.) | 4960 | 2000 | | Castle Rock (cont.) | 4336* | 20 | | | 4961
4965 | 3000
2000 | | • | 4341* | 20 | | | 4966 | 3200 | | | 4348* | 25 | | | 4971 | 1900 | | | 4351* | 20 | | | 4972 | 2000 | | | 4352* | 10 | | • | 4985 | 1800 | | | 4353* | 20 | | | 5019 | 300 | | | 4359* | 40 | | | 5021 | 1800 | | | 4360 | 1400 | | | 5026A | 2000 | | | 4363A* | 20 | | | 5027 | 320 | | | 4365* | 15 | | | 5028 | 1400 | | | 4398a* | 10 | | | 5129 | 1800 | | | 4398C* | 20 | | | 5130 | 1400 | | | 4402 | 1400 | | | 5131 | 1400 | | | 4403* | 40 | | | 5135 | 4000 | | | 4404 | 600 | | | 5141 | 2000 | | | 4406 | 1700 | | | 5193-1A* | 25 | | | 4409 | 2000 | | | 5324 | 1500 | | | 4411A | 2500 | | | 5327 | 1800 | | | 4413** | 120 | · | | 5329* | 40 | | | 4470B** | 5 | | | 5336* | 10 | | | 4470C** | 10 | | | 5355 | 1400 | | | 4473A | 1000 | | | 5356 | 3000 | | | 4477A | 1600 | | | 5360 * | 40 | | | 4485A** | 60 | | | 5381*** | 20 | | | 4486** | 0 | | | 5391 | 2600 | | | 4487 A** | 0 | | | 5394 | 2000 | | | 4489 | 300 | | | 5395 | 2200 | | | 4496B | 400 | | | 5403 | 2400 | | | 4497 A | 250 | | | 5 605* | 20 | | | 4498C | 1600 | | | 5609* | 20 | | | 4500 * | 10 | | | 5644* | 15 | | | 4505* | 10 | | | 5647* | 20 | | | 4508* | 20 | | | 5654 | 1 400 | | | 4518* | 5 | | | 5656 | 1200 | | | 4519
4622 F 1 | 900
1400 | | | 5658 | 1200 | | | 4634 | 1600 | | | 5659 | 2000 | | | 4635A | 3000 | | | 5665 | 2400 | | | 4635B | 1700 | | • | 5669 | 2000 | | | 4640 | 1400 | | | 5672 | 140 | | | 4640-1 | 2000 | | | 5675 | 400 | | | 4652 | 2000 | · | | 5689 | 1000 | | | 4667B | 2200 | | | 5691 | 1800 | | | 4669 | 1500 | | | 5711 | 1000 | | | 4670 A | 2200 | | | 5716A | 1900 | | | 4671A | 3000 | | | 5727 | 1200 | | | 4873 | 2400 | | | 57 3 0 | 400 | | | 4874 | 2400 | | | 5732 | 1200 | | • | 4875 | 2000 | | | 6144A | 3200
1300 | | | 4954A | 3000 | | | 6184A | 1200 | | · | 4958 | 2800 | , | | 6196
62 1 2 | 2600
600 | | Unit | | Sample | 10 ⁻⁵ siu | Unit | Sample | 10 ⁻⁵ siu | |------------------|------------------------------|---|--|---------------|--|---| | GRANODIORITE (c | ont.) | | | Gato-Montes (| cont.) 3373 | 30 | | Castle Rock (co | | 6237
6239
6401
6513
6539
RWK-6A*
RWK-6-1* | 2600
1800
1600
900
1100
40 | | 3377
3389
3390
3481a
3483a
3492
3498
3499 | 20
10
10
20
25
20
20 | | | **Bis | hop Ranch? | | | 3502
3505 | <i>3</i> 0
15 | | Deer Creek | East
body
West
body | 6030
6031
6032A
6032B
6032B
6050
6051
6052
6053
6113
6115
6116
6117 | 600
400
400
300
400
200
600
500
2000
1000 | | 3508
3515
3517
3521
3523
3534A
3733A
3762B
3763B
3766
3830
4004A
4004C | 15
15
25
20
120
25
25
20
30
25
10
30
60
20 | | Democrat Springs | | 6372
6374
6375 | 1000
25
20
25 | | 4006
4013
4 0 14
4018 | 30
10
15
5
25 | | Evans Flat | | 5241
5494
5495
5496
5497
5524
5526
5532A
5563
A-77 | 30
10
15
10
20
20
10
20
20 | Hatchet Peak | 4026
4028
4029
4031
4034
5809A
5810A
5811A
5816
5846 | 25
40
30
30
20
100
15
10
30
140 | | Gato-Montes | | 662
663
664
667A
3310C
3316
3317
3322
3340
3357
3371B | 25
20
15
20
5
10
15
10
25
15
25
30 | • | 5865A
5867
5868
5869A
5880A
5881
5890
5913
5914
5915B | 60
250
700
1000
20
30
900
800
40 | | Unit | Sample | 10 ⁻⁵ | siu | Unit | Sample | 10-5 | siu | |----------------------|--------------------------|------------------|-----|-------------------|-----------------|--------------|-----| | GRANODIORITE (cont.) | | | | Peppermint Meadow | 4703 | 1000 | | | | 3538 | 10 | | | 4995 | 3000 | | | Keene | 3539 | 30 | | | 4996 | 1600 | | | | 3544B | 25 | | | 5000 | 3000 | | | | 3590C | 30 | | | 5001 | 2000 | | | | 36 1 2 | 15 | | | 5033 | 1600 | | | | 3648A | 50 | | | 5034 | 130 0 | | | | 3653 | 25 | | | 5302B | 60
10 | | | | 3689 | 25 | | | 5811B | 10 | | | • | 3704 | 30 | | | 58 1 9 | 600 | | | | 3724A | 10 | | | 5820 | 1000 | | | | 3782 | 10 | | | 5823 | 600 | | | | 3787 | 15 | | | 5827 | 1500 | | | | 3788A | 20 | | | 5829 | 700 | | | | 28E04 | 20 | | | 5831 | 3500 | | | | 3859A | 10 | | | 5834 | 20 | | | | 3970 | | | | 5838 | 450 | | | | 4121 | 50 | | | 5839 | 1600 | | | | 4468 | 15 | | | 5841 | 2400 | | | Lebec | 673 | 10 | | | 5849 | 1100 | | | | 680 | 15 | | | 5852 | 2500 | | | | 687 | 15 | | | 5854 | 1150 | | | | 692 | 20 | | | 5855 | 1600 | | | | 696 | 20 | | | 5862 | 120 | | | | 700 | 20 | | | 5 866 | 2000 | | | | 7 02 | 20 | | | 5873 | 2500 | | | | 713 | 25 | | | 5875 | 2500 | | | | FM-1 | 10 | | | 5877 | 10 | | | | 3047 | 20 | | | 5883 | 2000 | | | | 3054 | 25 | | | 5915A | 350 | | | | 30 5 6 | 10 | | Pine Flat | 580 1 | 1400 | | | | 3078 | 1 5 | | Fine rac | 5801R | 1800 | | | | 3088 | 20 | | | 5802 | 1600 | | | | 3195 | 20 | | | 5803 | 1400 | | | | 3203 | 15 | | | 5804 | 1400 | | | | 3208 | 10 | | | 5885B | 20 | | | | 3211 | 10 | | | 5885R | 10 | | | | 3217 | 10 | | | 5887 - 3 | 40 | | | | 3222 | 20 | | | 5895A | 300 | | | | 3263 | 20 | | | 5895B | 400 | | | | 721 | 10 | | | 5897 | 600 | | | | 31 <i>3</i> 6 | 0 | | | 5898 | 1200 | | | | 3164 | 10 | | | 5900 | 400 | | | | 3186 | 0 | | | 5901B | 900 | | | | 3225 | 0 | | | 5902 | 400 | | | | 301 0 | 0 | | | 5926 | 400 | | | | 3138A | 10 | | | 5927 | 800 | | | Time Deink | 4833 | 20 | | | 5929 | 200 | | | Lime Point | 4033
4847 | 5 | | • | 5937 -1 | 10 | | | • | 4047
4847 - RA | 20 | | | 5941 | 300 | | | | 707/~KA | 20 | | | 5942 | 20 | | | | | | | | 5945 ∧ | 200 | | | · | , | | | | 5946 | 200 | | | | | | | <i>1</i> = | <i>)</i> , | | | | Unit | Sample | 10 ⁻⁵ siu | Unit | Sample | 10 ⁻⁵ siv | |----------------------|-----------------------|----------------------|---------------|-----------------|----------------------| | GRANODIORITE (cont.) | | | Rabbit Island | 4343 A * | 30 | | Dina Blak (sant) | E01.9 | 4.0 | | 4345* | 30 | | Pine Flat (cont.) | 5 948 | 40
10 | | 4346* | 45 | | | 5949
5050 | 10 | | 4356* | 20 | | | 5950 | 10 | | 4415* | 30 | | | 5957B | 30
20 | | 4417* | 35 | | | 5959
5960 | 25
25 | | 48 48 | 2200 | | | 5964 | 500 | | 4849 | 2800 | | | 5965 | 400 | | 4870 | 1000 | | | 5967 | 1100 | | 4871 | 2400 | | | 5969 | 1000 | | 4900 | 1200 | | | | 80 | | 4928 a | 800 | | | 5973
5003 | | | 4934 | 2000 | | | 5993
5005 | 1100
110 | | 4935 | 2800 | | | 5995 | 110 | | 4936 | 2400 | | Poso Flat | 4255 | 30 | | 4955A | 3000 | | | 4258 | 30 | | 4955B | 2600 | | | 4260 | 20 | | 4956 a | 3200 | | | 4261 | 25 | | 5134 | 2000 | | | 4263 | 25 | | 5159 | 600 | | | 4863 a | 35 | | 5160 | 1600 | | | 5 2 3 7 | 40 | | 5161A | 1100 | | | 5238 | 55 | | 5172** | 2200 | | | 5239 | 40 | | 5172-RA** | | | | 5 264 | 40 | | 5181-1 | 1800 | | | 526 5 | 30 | | 51 82 | 2600 | | · | 6276 | 5 0 | | 5184 | 2200 | | | 6277a | 40 | | 5186 | 2000 | | | 6278a | 40 | | 5 1 87 | 2800 | | | 6279 a | 110 | | 5188 | 1800 | | | 6287 | 30 | | 5189 | 2600 | | | 6290 | 30 | | 5218 | 900 | | | 6292 | 30 | | 5314 | 260 | | | 6297 | 70 | | 5315A | 900 | | | 6357 | 45 | | 5317** | 50 | | | 6359 | 3 0 | |
5320** | 25 | | | 6361 | 35 | | 5323** | 15 | | | 6364 | 40 | | 5326 | 500 | | | 6365 a | 1 5 | | <i>533</i> 8 | 1000 | | | 6366 a | 20 | | 5404 | 2400 | | | 6368 | 15 | | 5407 | 1700 | | • | ~ 6373 | 20 | | 5416 ** | 160 | | | A-31 | 20 | | 5419A** | 50 | | | A-34 | 10 | | 5421 + * | 100 | | | A-46 | 15 | | 5623** | 70 | | | A-50 | 10 | | 5624A** | 60 | | | A-90 | 3 0 | | 5625B** | 130 | | • | A-92 | 40 | | 5687 | 1400 | | | RWK-3B | 80 | `` | 5690 | 1600 | | Unit | Sample | 10 ⁻⁵ s | siu <u>Unit</u> | Sample 10 | 5
siu | |-----------------------|--------------------------------|--------------------|-----------------|------------------------|------------| | GRANODIORITE (cont.) | | | Wagy Flat | 4265 | 50 | | | | | 30 | 4266 156 | | | Rabbit Island (cont.) | 5713 | 2200 | | 4273 140 | | | | 5715A | 2200 | | 427 5A | 25 | | | 5721
6142 | 2000
2600 | | | 25 | | | 6157A | 2400 | | | 70 | | | 6166A | 2400 | | | 00 | | | | 2700 | | | 30 | | *Whiter | | | | 4287 120 | | | **separa | ate body? | | | | 30
20 | | Sacatar | 6420 a | 300 | | | 00
80 | | | 6423 | 2400 | | | | | | 6425 | 1500 | | | 50
60 | | | 6431 | 4000 | | | 15 | | | 6443 | 2500 | | | .5
25 | | | 6452A | 1400 | | | -5
15 | | | 6456A | 400 | | | 20 | | | 6459
6462 a | 900 | | | 40 | | | 6464 | 1800
1800 | | 4795A 140 | | | | 6467 | 1200 | | | 00 | | | 6472A | 1500 | | | 50 | | | 6472B | 3000 | | _ · · · | 40 | | | 6473A | 3000 | | | 00 | | | 6475A | 3000 | | | 40
20 | | • | 6477 | 2000 | | | 40 | | | 6480 | 800 | | | 25 | | | 6481 | 2000 | | | 00 | | | 6482A | 2500 | | | 50 | | | 6483 a
6491 a | 4000 | | | 25 | | | 6491 B | 250
1700 | | | 10 | | | 6492 | 600 | | | 40 | | | 6499A | 4000 | | | 00 | | | 6500A | 1200 | | | 3 0 | | | 6501A | 2000 | | 5211 A
5211D | 30
40 | | • | 6504 | 5000 | | | 25 | | | 6507 | 1200 | | | 40 | | | 6522A | 1200 | | 5246 140 | | | | 6523 A | 1200 | | 5247 200 | | | | 6526
6536в | 1400
1200 | | 5248 240 | | | | 6537 | 1600 | | 524 9 200 | | | | | | | 5253 200 | | | Sorrell Peak | 4363B | 30
15 | | 5254 160 | | | | 4368
4369 | 15
400 | • | | 25
35 | | | 4372 | 20 | | A-5 14 | | | | 4373 | 20 | | A-5-1 110 | | | • | 4376B | 15 | | A-61A 2 | 20 | | | 4377 | · 30 | | A-61B 2 | 20 | | | 4381 | 600 | • | | 00 | | | 4567 | 15
5 | • | | 00 | | | 4570 | 5 | | A-61-2 30 | 00 | | | | ~ | | | 5 | | |----------------------|------------------|----------------------|---------------------|-----------------|------------------|-----| | Unit | Sample | 10 ⁻⁵ siu | Unit | Sample | 10 ⁻⁵ | siu | | GRANODIORITE (cont.) | | | Bear Valley Springs | 3578A | 40 | | | | | | (cont.) | 3582A | 30 | | | Whiterock | 3735A | 25 | , | 3586A | 30 | | | | <i>373</i> 7 | 25 | | 3600B | 25 | | | | 3738a | 25 | | 3621 | 180 | | | | 3739A | 25 | | 3628 | 25 | | | | 4102A | 20 | | 3638-RA | 25 | | | | 4103A | 10 | | 3638-RB | 20 | | | | 4104B | 10 | | 3638-1A | 45 | | | | 4119Fl | 15 | | 3638 - 3 | 40 | | | | 4126 | 30 | | 3650A | 25 | | | | 4309 | 35 | | | | | | | 4310 | 60 | | 3656 | 40 | | | | 4312 | 20 | | 3664 | 45 | | | | 4314 | 30 | | 3667 | 40 | | | | 4370 | 15 | | 3668 | 50 | | | | 4371 | 30 | | 3669 | 45 | | | | | | | 3672 | 40 | | | | 4374 | 25
15 | | 3674 | 5 0 | | | | 4376A | 15
15 | | 3678 | 45 | | | | 4447 | 15 | | 3683 | 50 | | | | 444 8 | 20 | | 3690 a | 40 | | | | 4449 | 20 | | 3691 | 55 | | | | 4454 | 20 | | 3693 | 45 | | | | 4467 | 25 | | 3694 | 40 | | | | 4531A | 25 | | 3698 | 45 | | | | 4534 | 40 | | <i>3</i> 699 | 45 | | | | 4538 | 25 | | 3715 | 85 | | | | 4541 | 30 | • | 3718 | 30 | | | | 4565-1 | 20 | | 3728A | 120 | | | | 4568-1 | 20 | | | | | | | 4569A | 25 | | 3791
3793 | 30
40 | | | | | _, | | <i>3</i> 792 | 40 | | | TONALITE | | | | 3795
 | 30 | | | Antimony Peak | 3000B | 120 | | 3816 | 30 | | | Antimony reak | 3007 | 25 | | 3831 | 45 | | | | 3111 | | | 3833A | 30 | | | | 3022A | 30
25 | | 3835 | 40 | | | | | | | 3838 | 25 | | | | 3029B | 10 | | <i>3</i> 839 | 30 | | | | 3133 | 25
1.0 | | 3840 | 40 | | | | 3150D | 40 | | 3 852 | 30 | | | | 3152B | 30 | | 3853 | 45 | | | | 3153 | 60 | | 3854 | 40 | | | | 3158 | 30 | | 3860 | 45 | | | Bear Valley Springs | 3412 | <i>3</i> 5 | | 3863 | 50 | | | pear farrel phrings | 3413 | 30 | | 3 865 | 30 | | | | 3429A | 35 | | 3869 | 25 | | | • | 3444 | 35 | • | 3871A | 30 | | | | | 40 | | ·.3872 | 20 | | | | 35 57 | | • | 3872 - 4 | 30 | | | • | 3559
3565 | 50
30 | | | 20 | | | | 3565
3565 | 20 | | 3925
3027 | | | | | 357 1 | . 40 | | <i>3</i> 927 | 25 | | | | 3573 | 20 | | 3937 | 30 | | | e e | 3576 | 100 | | 394 5 | 45 | | | | | | | | | | | Unit | Sample | 10 ⁻⁵ siu | Unit | Sample | 10 ⁻⁵ siu | |---|---|---|-----------------------------|---|---| | TONALITE (cont.) Bear Valley Springs (cont.) | 3962 A 3963 3973 39750 3980 A 3991 4110 A 4111 4113 A | 30
40
30
25
40
45
20
30
40 | Bear Valley Springs (cont.) | 6322R
6329
6332
6335
6336
6340
6341
6342
6356
6369
6371
6376 | 40
40
20
30
30
40
20
40
80
20
30
20 | | | 411334124566184
4113381124566184
4114144444444444444444444444444444 | 433332555554344425035455000555555543322 3333 | Carver-Bowen Ranch | 5976A
5978
5979
5980
5981
5988
5988
5989
5991
6017
6019A
6028
6029
6033A
6036
6037A
6078
6079A
6078
6079A
60111
61114A
6275 | 45
600
1250
550
250
55
250
650
4000
120
4000
950
1000
3500
1350
4500
1000
2300
1250
1700
1100
95 | | Unit | Sample | 10 ⁻⁵ siu | Unit | Sample | 10 ⁻⁵ siu | |------------------|---------------|----------------------|---|-----------------------------|---------------------------| | TONALITE (cont.) | | | Dunlap Meadow (cont | :,)5998 | 80 | | | 5007 | 00 | 2 dil 2 di 1 di 1 | 5999 | 130 | | Dunlap Meadow | 5007
5008 | 90
700 | | 6000 | 80 | | | 5010 | 110 | | 6002 | 130 | | | 5015 | 25 | | 6004 | 80 | | | 5015R | 20 | | 6005 a | 20 | | | 5285 | 300 | Fountain Springs | 6024 | 600 | | | 5291 | 20 | 1 041104111 211 21160 | 6055A | 45 | | | 5292 | 3 0 | | 6056 | 3 5 0 | | | 5293 | 30 | | 6058A | 600 | | | 5295 | 40 | | 6059 | 20 | | | 5304 | 300 | | 6062 | 120 | | | 5305 | 25 | | 6065 | 1800 | | | 5573 | 30 | | 6066 | 1200 | | | 5575 | 100 | | 6084 | 500 | | | 5577
5584 | 40 | | 6085 | 500 | | | 5581
5584 | 50
80 | | 6105
6106 | 500
160 | | | 5805 | 60 | | 6106
6107 | 2 5 0 | | | 5807 | 40 | | | | | | 5870A | 60 | Hoffman C _a nyon | 384 3 A | 800 | | | 5870B | 60 | | 3844 | 400 | | | 5871 | 250 | | 3845 | 800 | | | 5872 | 50 | | 3846A | 600 | | | 5884 | 5 0 | | 3849 a
4379 | 500
40 | | | 5885 a | 60 | | 4379
4382 | 40 | | | 5885-1 | 80 | | 4390 | 40 | | | 5886A | 250 | | 4392 | 30 | | | 5887 | 275 | | 4393 | 30 | | | 5916A | 160 | | 4395 | 30 | | | 5918
5020 | 120
130 | | 4398B | 40 | | | 5920
5922 | 120 | | 4400 | 400 | | | 5924 | 60 | | 4401 | 700 | | | 5930 | 40 | | 4509A | 400 | | | 5931 | 120 | | 4554 | 3 0 | | | 5 932 | 200 | | 4555A | 30 | | | 5933 | 250 | Mount Adelaide | 3631 | 15 | | | 5937 | 45 | | 3631-2 | 15
5
25
15
20 | | | 5938A | 80 | | 4144A | 25 | | | 5939A | 90 | | 4145 | 15 | | | 5939B | 60 | | 4145-2 | 20 | | • | 5940
5952 | 100
45 | | 4145 -4
4148a | 15
10 | | | 5953 | 3 0 | | 4197 | 20 | | | 5954 | 40 | | 4220 | 10 | | | 5962 | 80 | | 4236 | 10 | | • | 5974 | 50 | | 4238 | 20 | | | 5975A | 45 | | 4246 | 15 | | | 5994 | 120 | | 4253A | 10 | | | 5996 | 80 | • | 4419 | 10 | | • | | | | 4420 | 10 | | - | | | | 4564 | 40 | | Table 2 | . (cont.) | | <i>5</i> 0 | 4567 | 25 | | | | | | 4569 | 15 | | Unit | Sample | 10 ⁻⁵ siu | Unit | Sample | 10-5 | siu | |------------------|--|---|----------------------|--|--|-----| | TONALITE (cont.) | | | QUARTZ DIORITE | | • | | | Walt Klein Ranch | 6061
6067
6069A
6070
6072
6073
6074B
6075
6076
6077
6088
6096
6280
6281A
6283
6285
6308
6312
6314-1
6320
6321
6345
6345A
6353 | 250
120
120
250
20
30
30
20
10
600
5
25
15
90
500
80
300
60
110
120
20
100
300
170
20 | Caliente Cyrus Flat |
3634R
3634R
3635R
3635R
3866-3A
3866-3B
3866-7C
5441A
5790B
5790B
57991
5799A
57998
57998
57998
57998
57998
57998
5800
4850-1
4850-1
4850-1
4897B
4897B
4899 | 50 4 4 4 3 3 4 6 4 4 3 2 2 2 2 2 3 4 7 6 5 5 2 5 2 3 4 7 6 5 5 2 5 2 5 2 5 2 5 2 5 2 5 2 5 2 5 2 | | | Wofford Heights | 6354
6355
RWK-1-RA
RWK-2(125
5054 | 100
50
100 | • • | 4904A
4905
4920
4922
4923
4926
4930
4938 | 700
700
800
400
400
1000
30
260 | | | | | 1200
50
80
600
40
60
800 | Freeman Junction | 6202
6205 a
6398 a
6433
6434
6438 a
6439 | 3000
2000
800
2000
2500
1600
2200 | | | Zumwalt Ranch | 6121 | 1200
1400
1600 | Long Valley | 6532 A
6508
6509 A | 140
2200
2000 | | | | • | | Rhymes Campground | 6255
6262 | 1000
150 | | | Unit | Sample | 10 ⁻⁵ siu | Unit | Sample | 10 ⁻⁵ siu | |------------------------|--------|----------------------|---------------------|---------------|----------------------| | 0 | | | | | 0 | | QUARTZ DIORITE (cont.) | | | Walker Pass | 5735A | 800 | | Tehachapi Mountains | 3098B | 40 | | 5735B | 2000 | | | 3100 | 45 | | 5735C | 1400 | | | 3246 | 40 | | 6136 | 3000 | | | 3252 | 35 | | 6149 | 2000 | | | 3254A | 50 | | 6169 | 2400 | | | 3266B | 30 | | 6171 | 2400 | | | 3270 | 35 | | 6178A | 2000 | | | 3283 | 15 | | 6179 | 3000 | | | 3285A | 30 | | 6193A | 1500 | | | 3285B | 25 | | 6220 | 2600 | | | 3304A | 50 | | 62 2 6 | 2400 | | | 3333 | 40 | | 6391 | 2000 | | | 3345 | 35 | | 6402 | 2000 | | | 3359A | 30 | | 6498 | 2800 | | | 3360A | 40 | Hypersthene- | | | | | 3400B | 30 | bearing | 3352C | 30 | | | 3407A | 40 | 2442 2116 | 3353 | 40 | | | 3430 | 45 | | 3441 | 40 | | | 3431 | 60 | | 3593 | 50 | | | 3432A | 120 | | 3594 | 60 | | | 3435A | 60 | | 3595 | 40 | | | 3439A | 50 | | 3702 | 70 | | | 3448A | 50 | | 3999C | 50 | | | 3572A | 45 | | 4428B | 40 | | | 3605 | 45 | | 4429 | 60 | | | 3651 | 30 | | • | | | | 3709 | 40 | QUARTZ MONZODIORITE | Š | | | | 3710 | 30 | Erskine Creek | 5612 | 400 | | | 3729 | 40 | | 5614 | 40 | | | 3730A | 35 | | 5617 | 30 | | | 3777 | 45 | | 5618B | 40 | | | 3793 | 45 | | 5618C | 40 | | | 3895B | 35 | | J 0.00 | | | • | 3899A | 40 | | | | | | 3950 | 3 5 | | | | | | 4009 | 25 | | | | | | 4045A | 30 | | | | | | 4192A | 70 | | | | Table 2. (cont.) Table 3. Comparison of modal magnetite with measured magnetic susceptibility for selected granitic samples in the southern Sierra Nevada. | Sample Modal magnetite (volume percent) | | | Magnetic susceptibility in 10 x 5 s.i. units | | | |---|---|--|--|--|--| | GRANITE | | | Calculated from modal magnetite | Measured with meter | | | Bishop 4414 Bob Rabbit 5602 Five Fingers 6420 Long Mdw 4964 Sherman 5121 " 5122 | 0.5
0.1
8 0.5
0.7
0.8
0.7 | | 1885
380
1885
2640
3015
2640 | 1200
1400
2000
3000
4000
3000 | | | GRANODIORITE | | | | | | | Alta Sierra 5566
Castle Rock 4966
Peppermint 5000
Rabbit Is. 5184
Sacatar 6499A
Wagy Flat 5247 | 0.7
0.2
0.9
0.7
0.6
0.7 | | 2640
755
3395
2640
2265
2640 | 2200
3200
3000
2200
4000
2000 | | | TONALITE | | and the Santa Santa Care and the | with the same of t | | | | Fountain Spr 6065
Zumwalt 6121 | 0.4 | | 1510
1 5 10 | 1800
- 1400 | | | QUARTZ DIORITE | | | • | • | | | Freeman Jct 6434
Long Valley 6508
Walker Pass 5735B | 1.0
0.6
0.3 | | 3770
2265
1130 | 2500
2200
2000 | | | Average | 0.6 | | 2200 | 2400 | | | Calculated values for 1% magnetite | a de la composição de la c | | 3700 | 4000 | |